Инсулинорезистентность и липотоксичность - две грани одной проблемы при сахарном диабете типа 2 и ожирении

Резюме

В обзорной статье представлен анализ клинических и экспериментальных данных о патогенетических механизмах инсулинорезистентости и липотоксичности при сахарном диабете. Рассматриваются их взаимосвязь и роль в развитии нарушения углеводного обмена с позиции теории ограниченной расширяемости жировой ткани. Также проанализированы протективные свойства адипонектина за счет повышения чувствительности к инсулину, стимуляции окисления свободных жирных кислот в печени и мышцах. Фармакотерапия инсулинорезистентности и липотоксичности в настоящее время ограничена. Отечественный гипогликемический комплексный препарат, содержащий антитела к С-концевому фрагменту β-субъединицы рецептора инсулина и антитела к эндотелиальной NO-синтазе в релиз-активной форме, показал эффективность в отношении чувствительности тканей к инсулину и повышения продукции адипонектина, что делает возможным его использование в качестве дополнительного компонента сахароснижающей терапии.

Ключевые слова:ожирение, сахарный диабет типа 2, инсулинорезистентность, липотоксичность, свободные жирные кислоты, адипонектин

Для цитирования: Аметов А.С., Тертычная Е.А. Инсулинорезистентность и липотоксичность - две грани одной проблемы при сахарном диабете типа 2 и ожирении // Эндокринология: новости, мнения, обучение. 2019. Т. 8, № 2. С. 25-33. doi: 10.24411/2304-9529-2019-12003.

Ожирение и сахарный диабет типа 2 (СД2) в последние десятилетия стали важнейшими медицинскими, социальными и экономическими проблемами. По данным Федерального регистра СД, в 2017 г. количество пациентов с СД2 составило 4 млн [1]. По сообщению Минздрава России, в 2017 г. ожирение впервые выявлено у 1,9 млн россиян. Распространенность ожирения среди мужчин в возрасте от 25 до 64 лет составляет 26,9%, среди женщин - 30,8% [2]. Неинфекционные эпидемии стали проблемой № 1 здравоохранения развитых стран и требуют решительных, безотлагательных мер. Согласно современным представлениям, модификация образа жизни в комплексе с ранней комбинированной терапией позволит избежать дальнейшего развития СД2 и его осложнений.

Теория ограниченной расширяемости жировой ткани

Жировая ткань (ЖТ) обладает высокой метаболической активностью, осуществляет синтез и секрецию множества биологически активных веществ, участвующих в углеводном (адипонектин, резистин, висфатин, оментин) и жировом обмене (белок - переносчик холестериновых эстераз, перилипин, ретинол-связывающий белок, аполипопротеин Е), процессах воспаления [фактор некроза опухоли α (ФНОα), интерлейкины (ИЛ-6, ИЛ-8, ИЛ-10, ИЛ-12), С-реактивный белок, адипсин, апелин, резистин], свертывания крови [ингибитор активатора плазминогена-1 (ИАП-1), тканевый фактор], поддержания артериального давления (ангиотензин II, ангиотензиноген, апелин) и пищевого поведения (лептин) [3]. Выделяют абдоминальный и висцеральный типы жировых отложений, между которыми существуют значительные функциональные различия. Висцеральный жир, расположенный около внутренних органов, брыжейки и сальника, отличается от подкожного типом адипоцитов, их эндокринной функцией, липолитической активностью, чувствительностью к инсулину и другим гормонам. Например, в висцеральной жировой ткани выше экспрессия и секреция ИЛ-6, ИАП-1, адипонектина, ангиотензиновых рецепторов 1-го типа, β3-адренергических, глюкокортикоидных и андрогенных рецепторов, а лептина - в подкожной. Более того, адипокины висцеральной жировой ткани поступают преимущественно в портальную систему и в печень, тогда как из подкожных депо - непосредственно в системный кровоток [4].

Отличительной чертой ожирения с висцеральным типом отложений является нарушение процесса подавления высвобождения свободных жирных кислот (СЖК) в ответ на инсулин и прием пищи по сравнению с пациентами без невыраженного ожирения или с ним [5, 6]. Уровень СЖК в постпрандиальном периоде у пациентов с висцеральным ожирением в 3 раза выше, что доказывает повышенную резистентность жировых клеток к антилиполитическому эффекту инсулина [6]. В исследованиях in vitro хроническое повышение СЖК (преимущественно пальмитиновой, линоленовой и стеариновой кислот) приводило к подавлению глюкозостимулированной секреции инсулина β-клетками с последующим их апоптозом, а также к развитию инсулинорезистентности в печени и мышцах [7]. Данный комплекс патологических событий получил название "липотоксичность". Клиническими исследованиями подтверждается взаимосвязь липотоксичности и СД2. В исследовании M. Korani и соавт. общий уровень насыщенных и мононенасыщенных жирных кислот у пациентов с СД был статистически значимо выше, чем в контрольной группе (р=0,006, 0,02 соответственно). Кроме того, у пациентов с СД2 уровень полиненасыщенных ЖК в сыворотке был значительно ниже, чем у здоровых людей (р=0,02). Заболеваемость СД2 положительно коррелировала с уровнями пальмитиновой, насыщенных и мононенасыщенных жирных кислот [8].

Взаимосвязь высоких концентраций СЖК с резистентностью к инсулину мышечной ткани была показана в исследовании M. Bajaj и соавт. [9]. Пациенты с СД2 получали терапию аципимоксом (ингибитор липолиза) по 250 мг каждые 6 ч в течение 7 дней, в результате было достигнуто значимое снижение уровня СЖК, которое коррелировало с повышением чувствительности к инсулину [9]. Похожие результаты были продемонстрированы на пациентах, имеющих генетическую предрасположенность к развитию СД [10].

На основании дальнейших исследований была сформулирована теория ограниченной расширяемости жировой ткани (рис. 1). В условиях положительного энергетического баланса ЖТ накапливает избытки СЖК в виде триглицеридов (ТГ), однако ее возможности к накоплению ограничены преимущественно генетическими факторами, а также особенностями висцерального жира. В данной ситуации инсулинорезистентность может выполнять защитную функцию для адипоцитов от избыточного накопления СЖК, которые поступают с пищей. В результате в инсулинорезистентных, "переполненных" ТГ адипоцитах активируется процесс липолиза, СЖК покидают ЖТ и попадают в систему портальной вены, оттуда поступая в печень и далее в другие органы и ткани [11].

Биохимические процессы, которые нарушаются под воздействием СЖК, сходны в различных органах тканях. В настоящее время получены данные об их патологических эффектах в р-клетках поджелудочной железы, печени, мышцах, сердце, почках.

Роль церамида и диацилглицерола в развитии инсудинорезистентности и липотоксичности

Церамиды - это мембранные липиды, предшественники сфингомиелина [12]. В 1990 г. впервые было доказано, что увеличение содержания церамида в печени и мышцах наряду с диацилглицеролами связано с резистентностью к инсулину у крыс (fa/fa крыс, гомозиготных по усеченному нефункциональному рецептору лептина) [13]. Воздействие избыточных длинноцепочечных насыщенных СЖК [пальмитата (16:0), стеарата (C18:0), арахидата (C20:0)] и линоцерата (C24:0), но не более короткого [миристата (C12:0)] или ненасыщенных СЖК индуцирует накопление церамидов с помощью серин-пальмитоилтрансферазы и церамидсин-тазы [14]. Предположительно синтез de novo церамида является медиатором СЖК-индуцированной гибели β-клеток. Сверхэкспрессия церамидсинтазы потенцирует пальмитат-индуцированное накопление церамидов и усиливает апоптоз путем продуцирования токсичных видов церамидов, таких как C18:0, C22:0 и C24:1 [15]. С2-церамид способен потенцировать проапоптоз и антипролиферативный эффект пальмитиновой кислоты в р-клетках. ЭР-стресс, изменения целостности митохондриальной мембраны и ингибирование протеинкиназы В церамидом предположительно индуцируют апоптоз в β-клетках. В исследовании E. BosLem и соавт. было доказано, что при введении в р-клетки синтетического церамида происходит его накопление в ЭР, снижаются уровни сфингомиелина и холестерина, что приводит к нарушению липидных плотов [16]. Церамид увеличивает проницаемость митохондриальной мембраны и приводит к активации внутренних путей через антиапоптотические молекулы BcL-2 и увеличение каспазы 3/7 [15]. Инактивация протеинкиназы В ассоциирована с накоплением церамидов и наблюдается у человека, получающего насыщенный жир. Ингибирование синтеза de novo церамида ослабляет СЖК-индуцированный р-клеточный апоптоз и снижает гипергликемию [17].

Роль мембранных белков-переносчиков в развитии инсулинорезистентности и липотоксичности

СЖК поступают внутрь клеток путем пассивной диффузии и с помощью транспортных белков: транслоказы жирных кислот (CD36), белка, связанного с плазматической мембраной, связывающей жирные кислоты (FABPpm), и белка транспорта жирных кислот (FATP). CD36 - ключевой переносчик ЖК в сердце и скелетных мышцах. Он находится на плазматической и митохондриальной мембране. Основным регулятором экспрессии данного белка является инсулин через путь передачи сигналов протеинкиназы B. При гиперинсулинемии увеличивается цитозольная экспрессия CD36, а также сопутствующее повышение содержания митохондриального CD36 в мышечных клетках. Таким образом, в митохондриях усиливается окисление ЖК и, как следствие, синтез из них церамидов. В β-клетках CD36 выполняет аналогичные функции. При гипергликемии увеличивается экспрессия данного белка на мембране, в результате поток ЖК в клетку приводит к активации оксидативного стресса и провоспалительных цитокинов. Учитывая важную роль данного транспортного белка, были созданы селективные ингибиторы CD36 - сульфо-N-сукцинимидильные производные. Предварительная инкубация с ингибитором CD36 предотвращала СЖК-индуцированный апоптоз с помощью продукции восстановленного активного кислорода.

Другой предполагаемый переносчик жирных кислот -FABPpm - увеличивает скорость транспорта СЖК через сарколемму, однако не участвует в их транспорте в митохондрии. FATP представляют собой семейство из 6 интегральных мембранных белков с внеклеточным/просветным N- и C-концевым доменами с активностью жирной ацил-КоА-синтетазы; следовательно, белки FATP обладают способностью захватывать жирные кислоты внутриклеточно. Изучение данных белков в настоящее время продолжается [18].

Роль митохондрий в развитии инсулинорезистентности и липотоксичности

Митохондрии являются основным местом деградации липидов. Клетки защищают себя от липотоксичности и гибели, либо окисляя СЖК, либо изолируя их в ТГ в виде липидных капель (ЛК). ТГ синтезируются с помощью ацилтрансфераз и фосфатаз в саркоплазматической сети и митохондриальной мембране, а затем упаковываются в цитоплазматические ЛК [19]. Чрезмерное накопление ЛК в гепатоцитах, кардиомиоцитах, скелетных миоцитах, адренокортикальных клетках, энтероцитах и макрофагах является отличительной чертой СД2, ожирения, атеросклероза, стеатоза печени и других метаболических заболеваний [20]. Хорошо известно, что митохондриальная функция необходима для нормальной стимулированной глюкозой секреции инсулина из β-клеток поджелудочной железы [21]. K. Peterson и соавт. в 2003 г. показали, что снижение синтеза аденозинтрифосфата (АТФ) связано с увеличением внутриклеточного жира. В изолированных митохондриях от людей, страдающих ожирением и СД2, синтез АТФ снижается и тесно коррелирует с уменьшением инсулин-стимулированной утилизации глюкозы и увеличением СЖК в плазме натощак [22]. Окислительная активность митохондрий и синтез АТФ снижаются, эти данные подтверждают гипотезу о том, что резистентность к инсулину у человека возникает из-за дефектов окисления митохондриальных жирных кислот, которые, в свою очередь, приводят к увеличению внутриклеточных метаболитов жиров. Предполагается, что снижение митохондриальной окислительно-фосфорилирующей активности у лиц с инсулинорезистентностью связано с нарушением функции митохондрий [12].

Роль эндоплазматического ретикулума в развитии инсулинорезистентности и липотоксичности

Активация стресса эндоплазматического ретикулума (ЭР) играет важную роль в этиологии резистентности к инсулину, особенно наблюдаемой при неалкогольной жировой болезни печени [12]. Сниженная способность ЭР к сворачиванию белка вызывает накопление незрелых белков в просвете ЭР, и это запускает сложную, в первую очередь адаптивную сигнальную сеть, называемую ответом развернутого белка или стрессом ЭР. Данный механизм регулирует липогенез, позволяя расширять мембрану ЭР и увеличивая его способность обрабатывать белки [12]. Когда стресс ЭР не может восстановить его функции, апоптоз стимулируется в основном за счет индукции гомологичного белка, связывающего белок CCAAT/энхансер (CHOP) и активации JNK. Активация JNK также запускается окислительным стрессом при липотоксичности [23]. Помимо своей проапоптотической активности, JNK также препятствует передаче сигналов инсулина путем фосфорилирования субстрата-1 рецептора инсулина в серин, который представляет собой ключевую связь между ЭР-стрессом и инсулинорезистентностью [24]. Способность стресса в ЭР вызывать печеночную инсулинорезистентность может в конечном итоге зависеть от того, изменяется ли баланс липогенеза и экспорта липидов. Запрограммированная гибель клеток, вызванная СЖК, которая, по крайней мере частично, происходит из-за стресса ЭР, называется липоапоптозом.

В ЖТ активация стресса ЭР, по-видимому, регулирует энергетический баланс. Мыши с гетерозиготной делецией Grp78 имели активацию адаптивных факторов стресса ЭР и были защищены от ожирения, стеатоза печени и резистентности к инсулину [25]. Данные свидетельствуют о том, что стресс ЭР функционирует как часть клеточного ответа, чтобы сбалансировать метаболические потребности. Некоторые аспекты стресса ЭР четко регулируют липогенез (например, путь IRE1a-XBP1s), образование ЛК и накопление липидов (например, через АТФ), а также регулируют метаболизм глюкозы [26]. Таким образом, активация стресса ЭР может изменять клеточный липидный баланс и нарушать передачу сигналов инсулина [12].

Помимо указанных патологических механизмов, в развитии инсулинорезистентности и липотоксичности также участвует активация провоспалительных цитокинов, оксидативного стресса [27]. Увеличение продукции АФК приводит к повреждению ДНК, белков и липидов. Он активирует определенные чувствительные к стрессу сигнальные пути, такие как ядерный фактор κB, p38MAPK и JNK [28], которые в конечном счете способствуют гибели клеток. Повышенный окислительный стресс также влияет на окислительно-восстановительный гомеостаз в ЭР [29].

Активация сигнального пути протеинкиназы С

Протеинкиназа С (ПКС) является ферментом, который связан с резистентностью к инсулину в печени. Было показано, что ПКС активируется в печени крыс, подвергнутых 6-часовому введению интралипида/гепарина, наряду с развитием резистентности к печеночному инсулину [30]. Эффекты ПКС могут быть опосредованы через измененный липогенез; экспрессия ключевых липогенных ферментов снижается у нокаутных по ПКС мышей. Эти данные могут служить доказательством того, что опосредованная диацилглицеролом активация ПКС напрямую нарушает передачу сигналов и действие инсулина, объясняя резистентность к инсулину как в мышцах, так и в печени при избытке липидов.

Более 20 лет изучается взаимосвязь инсулинорезистентности и липотоксичности, накоплено большое количество

теоретических данных об этих патологических процессах, однако человеческий организм имеет и защитные механизмы. Один из них - гормон ЖТ адипонектин.

Протективная роль адипонектина

Адипонектин был открыт в 1995 г. Он оказывает плейотропное действие: повышает чувствительность к инсулину, стимулирует окисление СЖК в печени и мышцах, ингибирует апоптоз, антиатерогенное и противовоспалительное действие, снижает образование раковых клеток (рис. 2) [4]. В 2001 г. две ключевые работы впервые продемонстрировали физиологическую роль адипонектина. После ведения адипонектина мышам его концентрация в плазме увеличивалась в 4 раза, что приводило к инсулинонезависимому снижению уровня глюкозы через подавление глюконео-генеза [31]. В другом исследовании T. Yamauchi и соавт. показали, что адипонектин может увеличивать β-окисление в скелетных мышцах и подавлять накопление липидов в печени через активацию 5'AMP-активируемой протеинкиназы (AMPK) [32].

В более поздних исследованиях была доказана роль фермента церамидазы в плейотропных эффектах адипонектина. Церамидаза - это фермент, превращающий вредные церамиды в полезный класс липидов, сфинганинов и сфингозинов, включая подкласс сфингозин-1-фосфата (S1P). Было доказано, что содержание церамидов в печени увеличивается у мышей ob/ob с генетическим ожирением и у животных с ожирением, вызванным высокожировой диетой [33]. Введение адипонектина приводит к сильному снижению уровня печеночных церамидов и, следовательно, к сенсибилизации к инсулину. Кроме того, у животных, получавших высокожировую диету, генетически обусловленное повышение уровня адипонектина связано с улучшенной толерантностью к глюкозе и сниженным содержанием церамида. Недавно

Помимо мощных эффектов на периферии, адипонектин также оказывает центральное действие. Введение адипонектина путем внутривенной инъекции приводит к перемещению белка через гематоэнцефалический барьер и повышает уровень адипонектина в спинномозговой жидкости [35]. В то же время внутрицеребровентрикулярная инъекция адипонектина вызывает снижение массы тела и увеличение расхода энергии, что может быть обусловлено повышением регуляции гипоталамического кортикотропин-рилизинг-гормона. Кроме того, адипонектин был обнаружен в спинномозговой жидкости [36]. Необходимы дальнейшие исследования для изучения сложного распределения и физиологического действия адипонектина в мозге в клинически значимых условиях у человека.

В исследованиях было доказано, что уровень циркулирующего адипонектина повышается при снижении массы тела. Диета, шунтирование желудка, орлистат или римонабант значительно повышали уровни адипонектина параллельно с уменьшением массы тела [37]. Тиазолидиндионы увеличивали экспрессию адипонектина и его уровень в крови у грызунов, лиц без диабета и пациентов с СД2. Упражнения без значительной потери массы тела не влияли на циркулирующий адипонектин, но улучшали чувствительность к инсулину. Экспрессия гена адипонектина и уровень циркулирующего адипонектина ниже у пациентов с СД2 по сравнению со здоровыми людьми [38]. В проспективном исследовании в течение 5 лет наблюдали 3599 мужчин без диабета, и было доказано, что низкий уровень адипонектина связан с повышенным риском развития СД2, даже после корректировки на традиционные факторы риска [39]. Таким образом, адипонектин можно считать в высшей степени перспективной молекулой для коррекции инсулинорезистентности.

Возможности фармакотерапии инсулинорезистентности и липотоксичности

Выше изложено множество сложных и взаимосвязанных биохимических процессов, которые вместе и по отдельности приводят к катастрофическим последствиям в организме. В реальной практике, как правило, пациенты попадают на прием к врачу, когда весь патологический цикл запущен и можно увидеть последствия: развернутую клиническую картину СД2, дислипидемии, атеросклероза и нередко поздних осложнений. В данной ситуации врач должен в доступной форме объяснить принципы рационального питания, физической нагрузки, которые, по данным многочисленных исследований, способны прервать большинство патологических механизмов. Следует особенно подчеркнуть важность участия пациента в своем лечении, так как именно от его мотивации во многом зависит результат. Одним из современных подходов к достижению метаболического контроля является ранняя комбинированная патогенетическая терапия. Данный подход позволяет "не теряя времени" помочь метаболизму вернуться на "правильный путь", активировать защитные механизмы и предотвратить развитие тяжелых осложнений СД2 [40].

Вне всяких сомнений, наиболее патогенетически выгодной комбинацией являются сочетания, содержащие метформин как основной препарат для улучшения чувствительности тканей к инсулину. Выбор второго препарата осуществляется лечащим врачом в соответствии с индивидуальными целями для каждого пациента, прежде всего в соответствии с сердечно-сосудистой коморбидностью. В данном контексте необходимо обратить внимание на препараты отечественной фармацевтики.

Комплексный препарат, содержащий антитела к С-концевому фрагменту р-субъединицы рецептора инсулина (релиз-активные антитела) и антитела к эндотелиальной NO-синтазе, оказывает плейотропное действие: повышает чувствительность тканей к инсулину, что сопровождается умеренным снижением уровня глюкозы натощак на 1,15 ммоль/л ко 2-й неделе терапии, а также позволяет повысить эффективность инсулинотерапии, стабилизировать применяемые дозы препаратов инсулина и снизить риск развития побочных эффектов [41-43]. Кроме того, препарат стимулирует работу фермента эндотелиальной NO-синтазы и продукции оксида азота, что способствует снижению реактивности сосудов, уменьшению сосудистого спазма, нормализации уровня артериального давления и улучшению периферической микроциркуляции [44, 45]. Особый интерес представляют данные исследования, проведенные на зрелых адипоцитах человека, которые инкубировали в течение 72 ч вместе с комплексным препаратом антител к С-концевому фрагменту β-субъединицы рецептора инсулина и антител к эндотелиальной NO-синтазе [46]. Было показано статистически значимое увеличение концентрации адипонектина в культуральной среде по сравнению с показателями, полученными для контролей. Препарат сравнения росиглитазон стимулировал продукцию адипонектина, но выраженность эффекта была ниже по сравнению с эффектом антител к С-концевому фрагменту β-субъединицы рецептора инсулина и антител к эндотелиальной NO-синтазе. Поскольку культуральная среда не содержала инсулин, полученные данные позволяют предположить, что комбинированный препарат посредством прямого влияния на β-субъединицу рецептора инсулина зрелых адипоцитов человека активирует рецептор инсулина, что вызывает активацию его сигнальных путей, приводя к усилению секреции адипонектина [46]. Учитывая ограниченный выбор препаратов, улучшающих чувствительность тканей к инсулину, комбинация антител к С-концевому фрагменту β-субъединицы рецептора инсулина и антител к эндотелиальной NO-синтазе может быть использована в качестве дополнительного компонента сахароснижающей терапии.

Благодаря многочисленным экспериментальным и клиническим исследованиям не вызывает сомнений тесная взаимосвязь инсулинорезистентности и липотоксичности в патогенезе ожирения и СД2. Поиск и разработка молекул, способных эффективно влиять на данные патологические механизмы, являются одними из важнейших проблем современной эндокринологии. Возможность влиять на уровень адипонектина представляется перспективным способом коррекции как инсулинорезистентности, так и липотоксичности, благодаря его плейотропным эффектам. В то время как создание препаратов на основе данного вещества является вопросом будущего, в отечественной фармацевтике уже существуют молекулы, способные опосредованно влиять на инсулинорезистентность и уровень адипонектина, что расширяет возможности ранней комбинированной терапии СД2.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

1. Дедов И.И., Шестакова М.В., Викулова О.К. Эпидемиология сахарного диабета в Российской Федерации: клинико-статистический анализ по данным Федерального регистра сахарного диабета // Сахарный диабет. 2017. № 20 (1). С. 13-41.

2. Минздрав назвал страдающие от ожирения регионы. https:// www.rbc.ru/society/24/07/2018/5b519ee49a7947f2d4d7fa9b

3. Hajer G.R., wan Haeften T.W., Visseren F.L. Adipose tissue disfunction in obesity, diabetes and vascular diseases // Eur. Heart J. 2008. Vol. 29, N 24. P. 2959-2971. doi: 10.1093/eurheartj/ehn387

4. Дедов И.И., Мельниченко Г.А., Бутрова С.А. Жировая ткань как эндокринный орган // Ожирение и метаболизм. 2006. № 1. P 6-13.

5. Guo Z., Hensrud D.D., Johnson C.M., Jensen M.D. Regional postprandial fatty acid metabolism in different obesity phenotypes // Diabetes. 1999. Vol. 48, N 8. P. 1586-1592.

6. Ebbert J.O., Jensen M.D. Fat depots, free fatty acids, and dyslipidemia // Nutrients. 2013. Vol. 5, N 2. P. 498-508.

7. Unger R.H. Lipotoxic diseases // Ann. Rev. Med. 2002. Vol. 53. P. 319-336.

8. Korani M., Firoozrai M., Maleki J., et al. Fatty acid composition of serum lipids in patients with type 2 diabetes // Clin. Lab. 2012. Vol. 58. P. 1283-1291.

9. Bajaj M., Suraamornkul S., Romanelli A., Cline G.W. et al. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty acyl-coAs and insulin action in type 2 diabetic patients // Diabetes. 2005. Vol. 54, N 11. P. 3148-3153.

10. Cusi K., Kashyap S., Gastaldelli A. et al. Effect on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes // Am. J. Physiol. Metab. 2007. Vol. 292. P. 1775-1778.

11. Brans C., Grunnet L.G. Mechanisms in endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? // Eur. J. Endocrinol. 2017. Vol. 176, N 2. P. 67-78.

12. Samuel V.T., Shulman G. Mechanisms for insulin resistance: Common threads and missing links // Cell. 2012. Vol. 148. P. 852871.

13. Turinsky J., Bayly B.P., O’Sullivan D.M. 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin // J. Biol. Chem. 1990. Vol. 265, N 14. P 7933-7938.

14. Summers S.A. Ceramides in insulin resistance and lipotoxicity // Prog. Lipid Res. 2006. Vol. 45, N 1. P 42-72.

15. Veret J., Coant N., Berdyshev E.V., Skobeleva A. et al. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells // Biochem. J. 2011 Vol. 438, N 1. P 177-189.

16. Boslem E., Weir J.M., MacIntosh G., Sue N. et al. Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic β-cells// J. Biol. Chem. 2013. Vol. 288, N 37. P 26569-26582.

17. Shimabukuro M., Zhou Y.T., Levi M., Unger R.H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes // Proc. Natl. Acad. Sci USA. 1998. Vol. 95, N 5. P 2498-2502.

18. Engin A.B. What is lipotoxicity? Adv. Exp. Med. Biol. 2017; 960: 197-220. doi: 10.1007/978-3-319-48382-5_8

19. Walther T.C., Farese R.V. Jr. The life of lipid droplets // Biochim. Biophys. Acta. 2009. Vol. 1791, N 6. P 459-466.

20. Aon M.A., Bhatt N., Cortassa S.C. Mitochondrial and cellular mechanisms for managing lipid excess // Front. Physiol. 2014; 5: 282.

21. Lowell B.B., Shulman G.I. Mitochondrial dysfunction and type 2 diabetes // Science. 2005. Vol. 307. P 384-387.

22. Petersen K.F., Befroy D., Dufour S., Dziura J. et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance// Science. 2003. Vol. 300. P 1140-1142.

23. Gao D., Nong S., Huang X., Lu Y. et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways // J. Biol. Chem. 2010. Vol. 285, N 39. P. 29965-29973.

24. Aguirre V., Uchida T., Yenush L., Davis R., White M.F The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307) // J. Biol. Chem. 2000. Vol. 275, N 12. P 9047-9054.

25. Ye R., Jung D.Y., Jun J.Y., Li J. et al. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance // Diabetes. 2010. Vol. 59 P 6-16.

26. Lee M.W., Chanda D., Yang J., Oh H. et al. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH // Cell Metabolism 2010. Vol. 11, N 4. P. 331-339.

27. Seifert E.L., Estey C., Xuan J.Y., Harper M.E. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation // J. Biol. Chem. 2010. Vol. 285. P 5748-5758.

28. Ghosh J., Das J., Manna P, Sil PC. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-kappa B, p38 and JNK MAPK pathway // Toxicol. Appl. Pharmacol. 2010. Vol. 240, N 1. P. 73-87.

29. Banhegyi G., Benedetti A., Csala M., Mandl J. Stress on redox // FEBS Letters. 2007. Vol. 581 P 3634-3640.

30. Lam T.K., Yoshii H., Haber C.A., Bogdanovic E. et al. Free fatty acid-induced hepatic insulin resistance: A potential role for protein kinase C-delta // Am. J. Physiol. Endocrinol. Metab. 2002. Vol. 283, N 4. P E682-E691.

31. Berg A.H., Combs T.P, Du X. et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action // Nat. Med. 2001. Vol. 7 P 947953.

32. Yamauchi T., Kamon J., Waki H. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity // Nat. Med. 2001. Vol. 7. P 941-946.

33. Holland W.L., Miller R.A., Wang Z.V. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin // Nat. Med. 2011. Vol. 17. P 55-63.

34. Xia J.Y., Holland W.L., Kusminski C.M. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis // Cell Metab. 2015. Vol. 22. P. 266278.

35. Qi Y., Takahashi N., Hileman S.M. et al. Adiponectin acts in the brain to decrease body weight // Nat. Med. 2004. Vol. 10. P 524529.

36. Kusminski C.M., McTernan P.G., Schraw T. et al. Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum // Diabetologia. 2007. Vol. 50. P 634-642.

37 Despres J.P., Golay A., Sjostrom L. Rimonabant in Obesity-Lipids Study Group: Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia // N. Engl. J. Med. 2005. Vol. 353. P 21212134.

38. Kadowaki T., Yamauchi T., Kubota N., Hara K. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome // J. Clin. Invest. 2006. Vol. 116. P 1784-1792.

39. Snijder M.B., Heine R.J., Seidell J.C., Bouter L.M. et al. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women: the Hoorn study // Diabetes Care.

2006. Vol. 29. P. 2498-2503.

40. Аметов А.С. Ожирение. Современный взгляд на патогенез и терапию. Т. 1. М. : ГЭОТАР-Медиа, 2019. 384 с.

41. Воробьев С.В., Петровская Е.Ю., Кузьменко Н.А., Хрипун И.А. Новый препарат в комплексной терапии сахарного диабета. Пострегистрационный опыт применения у пациентов с сахарным диабетом 1-го и 2-го типа // Медицинский совет. 2018. № 16. С. 28-34.

42. Gorbunov E.A., Nicoll J., Myslivets A.A., Kachaeva E.V., Tarasov S.A. Subetta enhances sensitivity of human muscle cells to insulin // Bull. Exp. Biol. Med. 2015. Vol. 159, N 4. P 463-465.

43. Gorbunov E.A., Nicoll J., Kachaeva E.V., Tarasov S.A., Epstein O.I. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin. Nutr. Diabetes. 2015. Vol. 5, N 7. P e169. doi:10.1038/nutd.2015.20

44. Белоус А.С., Покровская Т.Г., Покровский М.В. и др. Изучение кардиопротективных эффектов смеси гомеопатических разведений поликлональных кроличьих антител к эндотелиальной синтазе оксида азота (eNOS) С12, С30, С200 при экспериментальном моделировании L-NAME индуцированного дефицита оксида // Тезисы докладов XIV Российского национального конгресса "Человек и лекарство". М., 2007.

45. Покровский М.В., Кочкаров В.И., Покровская Т.Г. и др. Сравнительное изучение потенциальных эндотелийпротекторов и препарата Импаза при моделировании дефицита оксида азота // Бюл. экспер. биол. 2009. Т. 148, № 8, прил. С. 154-158.

46. Nicoll J., Gorbunov E.A., Tarasov S.A., Epstein O.I. Subetta treatment increases adiponectin secretion by mature human adipocytes in vitro // Int. J. Endocrinol. 2013. Vol. 2013. P 925874.

Материалы данного сайта распространяются на условиях лицензии Creative Commons Attribution 4.0 International License («Атрибуция - Всемирная»)

ГЛАВНЫЙ РЕДАКТОР
ГЛАВНЫЙ РЕДАКТОР
Александр Сергеевич Аметов
Заведующий кафедрой эндокриноло­гии, заведующий сетевой кафедрой ЮНЕСКО по теме "Биоэтика сахарного диабета как глобальная проблема" ФГБОУ ДПО РМАНПО Минздрава России (Москва)"
Вскрытие

Журналы «ГЭОТАР-Медиа»